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Local symmetries in systems with constraints 
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Abstract. For arbitmy systems with bt-class consuaints the local gauge transformations 
are consmcled in phase and configuration spaces, i.e. a method for obtaining symmeVy 
hansfomtions in the second Noether's thwrem is piven. 

1. Introduction 

The approach Dirac proposed for describing systems with constraints [ I ]  has recently 
amacted renewed attention in view of the fundamental role of gauge theories in elementary 
particle physics because these theories belong to the class of degenerate theories. The Dirac 
hypothesis has been under discussion for a long time and according to it, all the first- 
class constraints are generators of gauge transformations. In the existing literature there are 
many divergent opinions, some of them [2,3] totally reject this hypothesis and some of them 
completely accept it [4-71, which signifies that in the general case no method yet exists for 
finding gauge transformations in theories with constraints. Knowledge of the explicit form 
of gauge transformations is necessary in many cases, for instance, in BRST [8] and Sp(2) 
[9] quantization, for deriving improper conservation laws and for studying the connection 
between various gauges. 

Gauge transformations were consmcted by two approaches (however, in the general 
case the problem was not solved). One of them [6] is based on a generalized Hamiltonian 
HE that is a sum of the canonical Hamiltonian and all the first-class constraints with 
their Lagrange multipliers; there the phase space is formally extended by assuming the 
Lagrange multipliers to be extra coordinates. This extension is required for removing the 
terms proportional to the Lagrange multipliers from the action variation by ascribing the 
corresponding transformations to the multipliers. This approach differs from the Dirac 
approach and, moreover, the space thus extended has no symplectic structure of the phase 
space. The other approach [3,10-121 (without extending the phase space) also did not 
permit one to obtain gauge transformations in the general case. The reason is that the 
group structure of the generator of gauge transformations was given a priori: the number of 
arbitrary parameters was fixed beforehand (it was equal to the number of primary first-class 
constraints), which did not follow from the Dirac hypothesis. 

In OUT earlier papers [4,5], we suggested a method of constructing infinitesimal gauge 
transformations on the basis of the variational principle for the action. We proceeded in 
accordance with the Dwac hypothesis and on the algebra of consfdnts we imposed the 
restriction consisting in that the Poisson brackets of primary constraints with all constraints 
are linear combinations of primary constraints. Then it is natural to ask to what extent this 

03054470/94/196509+15$1950 0 1994 IOP Publishing Ltd 6509 



6510 S A  Cogilidze et a1 

restriction reduces the class of theories for which gauge transformations can be constructed, 
and what is the nature of degeneracy of Lagrangians, because there are examples [11-13] 
when this restriction is broken up. Note. that the mentioned restriction on the constraints 
applies also to the aforecited articles. Moreover, these approaches do not embrace the cases 
when higher derivatives are present in the symmetry transformation law. The latter has also 
to do with the Lagrangian formalism [141. 

In this paper, following the method applied in [3] (i.e. requiring the transformed 
coordinates to be solutions of the Hamiltonian equations of motion) and the Dirac hypothesis, 
we derive infinitesimal gauge transformations in phase and configuration space for arbitrary 
degenerated Lagrangians. We also show that the difficulty due to restriction on the algebra 
of constraints can be removed by passing to an equivalent set of constraints and that the 
degeneracy of Lagrangians stems from their being gaugeinvariant. (We will consider only 
first-class constraints as only these constraints are responsible for gauge degrees of freedom 
[I].) The method will be applied to examples not yet solved [I l l .  

2. Definitions, derivation of infinitesimal gauge transformations, algebra of constraints 

Subsequent considerations may be extended to field theory, but here, for simplicity, we 
restrict ourselves to a system urith a finite number of the degrees of freedom described by a 
degenerate Lagrangian L(q, 4). where q = (q,, , . . , q N )  and rj = dq/dt = (q,, . . . , 4 ~ )  are 
generalized coordinates and velocities, respectively. Degeneracy of the Lagrangian implies 
that 

To pass into the Hamiltonian formalism, we introduce the momentum variables 

which are not all independent due to condition (I) .  As a result, there appear N - R 
relationships in phase space: 

@L(q,p)%O @ = I  ,..., N-R. (2) 

By the Dirac terminology, @A in  (2) are primary constraints and RZ means weak equality. 

brackets as follows [I]: 
The Hamiltonian equations of motion are written in terms of the standard Poisson 

4i = {qi, HT~ p i  = (pi, HT) @L(q, p )  a 0 (3) 

HT = H, + U,@:. 

where the total Hamiltonian HT is 

(4) 

In (4) Hc is the canonical Hamiltonian and U= are arbitrary functions of time. 
For the system of equations (3) to be self-consistent, the primary constraints should be 

conserved in time. As a result, there arise secondary constraints @:(q, p )  KZ 0 that should 
also be conserved in time and lead to constraints of the next stage. This process is continued 
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up to trivial fulfillment of the conditions of stationarity which occur at a certain stage Ma. 
Following Dirac, we denote the whole set of constraints, both primary and secondary of all 
stages, as follows 

$2 a =  1, ..., N - R  m , = 1 , 2  , . . . ,  M,. (5) 

We assume that the system (5) is a complete set of independent functions [ 11. 

in the form 
In accordance with the Dirac hypothesis, we look for infinitesimal gauge transformations 

where the generating function G is given by 

G = &?g" a = l ,  ..., N - R  m, = 1, ..., Me (7) 

with 
As in [3 ,7 ,11 ,12] ,  we require the transformed quantities q( and pi defined by (6) to be 

solutions of the Hamiltonian equations of motion. Let us use in the following the statement 
proved in [7] (p 2729). Consider a function @(q, p ,  t )  which is supposed to be a first-class 
function and satisfies the relation: 

being arbitrary functions of time. 

(8) a@ 
{*, H C J  + &(" $2 + at = wa(4 .  PI tM&> P) 

where w, are functions of q ,  p and t .  Then the infinitesimal canonical transformation 
generated by @(q,  p .  t )  maps the solution [q(t) .  p ( t ) .  u ( t ) ]  into another trajectory 
[q'(r), p ' ( t ) ,  U'@)]: 

(9) 

(10) 

(11) 

a@ 
api 

a* 

q:(t) = q i w  + E - ( q ( t ) ,  m, t )  

pI(t)  = pi(t) - -~ - (q ( t ) ,  ~ ( t ) .  t )  

U;( ' )  = u&) + w z ( q ( t ) ,  P ( f ) , t )  

aqi 

which is also an extrema1 of action S and satisfies the equations of motion (3) with the 
Hamiltonian Hi: 

(12) 

The condition of I,!J being a first-class function guarantees that + generates transformations 
of the points (4. p )  into points (4'. p' )  of the same manifold. In conformity with the Dirac 
hypothesis, we search for @ in the form (7), i.e. @ 

I H;(q,p,t)=HT(q,P,t)+E -;i;(qpP*t)+(@,HTJ Ila* 
= f f C G 7 .  P) + U&(f)$&I> P). 

G. 
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We recall that we consider only first-class constraints, which implies the following 
relations 

(13) 

l #" .Hc1=g~: ,@: i  (14) 

K"?@yI=f ,  mu mp my 4;" 

m , , p . y . . = l , . . . , M , , ~ . y . ~  m = I ,  ..., % + I .  

(Here and in what follows, summation runs over repeated upper and lower indices.) Using 
these relations and the function G defined by (7) we rewrite equation (8) in the form 

[ ( E F + g ~ ' " ' E m P ) ~ F + ( & ~ + g p  mn (I I p - U y f Y p n c r E p  I m  I mP )@A 
L Y b  

+ f mn I m m E m s  m. 
y u  @a l+p1=0 m e > 2  m g > m , - 1 .  (15) 

Owing to the constraints being independent, the equality (15) can be satisfied if the 
coefficients of secondary constraints of all stages vanish, i.e. 

(16) 

This equality cannot be satisfied by any selection of functions 82 because the Lagrange 
multipliers u Y ( f )  are arbitrary. However, when 

( i ~  + mp m. ~ ) + u y f y ; & I " ~ y = O  m , > 2 .  

f?;? = o  for m, > 2 (17) 

we obtain [4] 

8, ""+go II B mp 2 m, - 1. (18) mp m, = 0 

Note that the condition (17) is equivalent to the relation 

(19) ($$,@3=fgy 1 m , I  I 

In our previous papers [4,5], on the basis of variational principle, we have derived the 
relation (IS) between the parameters &2 for systems with constraints obeying the condition 

The system of equations (18) is not complete; the number of unknown functions exceeds 
the number of equations by the number of primary constraints. Therefore, introducing 
arbitrary functions E, in the amount equal to that of primary constraints and applying the 
iteration procedure to (18), we can express all in terms of the introduced functions and 
gmp ? and their derivatives [5 ] :  

(19). 

b 

(here summation runs also over ma), where 
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and B m,, " p  are, generally speaking, functions of q and p and their derivatives up to the 
order M, - m, - I .  Then the generating function of gauge transformations G assume the 
form 

(21) 

U P  

G = B u s  m. mp @~&;M=-" 'F )  ma = m,, . . . ~ Mu. 

Owing to the derivatives of q and p with respect to time being present in Bz 7,  the 
Poisson brackets are not determined in the transformations (6). However, this problem was 
solved in our previous paper [5] where it was shown that gauge transformations generated 
by the generating function G (21) are canonical in extended phase space. The action is 
invariant under these transformations and the corresponding gauge transformations in the 
configuration space (see Appendix A)' The number of arbitrary functions the function G is 
dependent on equals the number of primary constraints. As can be seen from formula (21), 
the transformation law may include both arbitrary functions & , ( f )  and their derivatives up 
to and including order Ma - 1:  the highest derivatives &kM"-') should always be present. 

Note that derivation of formula (21) presents no extra difficulties and does not require 
further assumptions, as compared with the D i m  approach. 

Also we mention that since the first-class constraints compose a quasi-algebra [15], 
the condition (19) means that primary constraints represent the ideal of that quasi-algebra. 
Below, we show that for arbitrary Lagrangians (even when condition (19) does not hold) 
we can always pass to an equivalent set of constraints for which the condition (19) will be 
valid. 

3. Gauge transformations for an arbitrary degenerate Lagrangian 

To generalize the method of construction of gauge transformations to an arbitrary degenerate 
Lagrangian, it is necessary to analyse the situation when the condition (19) is not fulfilled. 
To this end, let us recall the inherent arbitrariness of the Dirac Hamiltonian formalism. When 
there is a complete set of constraints defined by the Dirac procedure (@=, a = 1,. . ., N - R ;  
m, = 1 , .  . . , Me) and functionally independent, we can always pass to an equivalent set of 
constraints by the transformation 

where 

i.e. this determinant is not zero on the surface C given by the complete set of constraints. 
Now consider a particular case of the transformation (22) when primary constraints 

remain unchanged, i.e. 

=+. foranym,. 

' The corresponding gauge transformations in the configuration space me defined as follows: 

d 
d f  

6q(t )  = - -sy ( r )  6 ~ i ( r )  = IaW,  Gll,+ 



From the expression (24) it is clear that if we could choose C y  : so that the coefficients 
of secondary constraints vanish 

(25) 

condition (19) will be valid for the new set of constraints $2. Thus, for Cm" m). we have 
derived a system of linear inhomogeneous equations in the first-order partial derivatives 
(25). This system can be shown to be fully integrable. The condition of integrability for 
systems of the type (25) is as follows [161: 

{ & c y ; ~ I + f a a  I m i m , C m n m a  p 6 = o  

a y  

{@:, {@:, c y ?  1) - {@;> (@;..cy: 1) = 0. (26) 

Using (25), properties of the Poisson brackets and making some transformations we rewrite 
relation (26) in the form 

I m6 m. 1 ml my IC me m& = 0 
( @ : 9 f a 6  1 m ' m ' ) + f c 8  r f a r  y p 6 

I mnm, I m r m ,  I m. my - [t4:.f,6 ) - f m 6  r y 

m p , m s , m ,  > 2 .  (27) 

Utilizing the Jacobi identity 

and relation (13) we obtain 

Note that the Poisson brackets between primary constraints may, without loss of generality, 
be considered to be strictly zero in the whole phase space. As every primary constraint 
contains at least one momentum variable, there always exist canonical transformations 
transforming the primary constraints into new momentum variables (see below). Therefore, 
the expressions in square brackets in front of the constraints 47 on the left-hand side of the 
identity (28), being coefficients of the functionally independent quantities, each disappear 
separately. As condition (27) contains the same coefficients of C y  7, it is satisfied 
identically, which proves the system of equations (25) to be fully integrable. Therefore, 
there always exists a set of constraints equivalent to the initial set for which condition (19) 
holds valid. 

Now we shall describe the way of passing to, at least, one separated set of equivalent 
constraints 62 when all the primary constraints are momentum variables. This can be 
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done by the iteration procedure provided that we take into account the property of primary 
constraints 

I l l  1 
{$:? $;} = fa p y4y 

that follows from the stationaritv condition for d and from the fact that we are dealing 
only with first-class constraints. -There always e%& canonical transformations of the form 
117,181 

4 = $ : ( 4 . P )  {61,P1)= 1 rQ, ,Fr l=ar  
( ~ I , ~ , ) = ( Q I , ~ ~ ] = { P I , ~ ~ ] = ( ~ I , Q ~ ) = O  u , r = 2  , _ . _ ,  N .  (29) 

(The bar over a letter means the first stage of the iteration procedure.) All the remaining 
primary constraints assume the form 

4'L(Q, i") =4:(4(Q. F). p(Q, P))lp,,o 01 = 2, .. . , N - R .  

In view of the transformation being canonical, we can write 

with 0; having the structure 1181 

det b l ~  # 0 = 1 5 1  161 
a v  Y 

and obeying the conditions 

As all the constraints 6; do not depend upon Q l  and 4, we perform an analogous procedure 
for the constraint 6; in the 2N - 2-dimensional subspace (Q., P g ) ( m  = 2, . . . , N ) ,  i.e. 

without affecting Q1 and P T .  Then the constraints @,(CY = 3 , .  . , , N - R )  arising in a 
formula analogous to formula (30) are independent of el, PI and Q,, P 2 .  Next, making 
this procedure step-by-step N - R - 2 times we finally obtain the primary constraints to be 
momenta, and therefore they commute with each other (final momenta and coordinates will 
be denoted by Q. and Pe, respectively, 01 = 1, , . . , N - R ) .  All secondary constraints will 
then assume the form 

@ ? ( Q , P ) = 4 ~ ( 4 ( Q , P ) , p ( Q , P ) ) l p = = o  01=l +..., N - R  m , = 2  ,..., Ma. 

= I  

- -  

As the transformations are canonical, we can write 

with @? having the structure [I81 
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and obeying the conditions 

The set of constraints thus constructed (primary constraints being momenta and secondary 
62) satisfies condition (19) with vanishing right-hand side, i.e. we have derived the 
searched for set of constraints. Note that ( A - ’ ) :  7 in (31) is a solution to the system of 
equations (25). 

So, we may conclude that the difficulty associated with the condition (19) not being 
valid for a certain degenerate Lagrangian can be overcome by passing to an equivalent 
set of constraints. Therefore, the method we proposed earlier for constructing gauge 
transformations [4,5] is applicable in the general case. 

4. Examples 

1. Consider the Lagrangian [ 1 1 J 

where 01 and ,9 are scalar coordinates; x and y are n-dimensional vectors. 
In the Hamiltonian formalism there are the following primary constraints 

4 ; = p . C ; . 0  4: = pB = 0 

and the total Hamiltonian 

HT = m ~ x  ‘ P ,  -BY ’P, + UIP. + U Z P B .  

From the condition of self-consistency of the theory we obtain two secondary and one 
tertiary constraint: 

4: = -p* . p ,  = 0 q$ = y . p ,  = 0 4; = -pp: C;. 0. 

It may be verified directly that all these constraints are of the first class and they do not 
obey condition (19) 

1 3  k#JL $4 = - - @ I .  B 
As the primary constraints in the example are momentum variable, we can turn them into 
an equivalent set of constraints by formula (31): 

4; = lp; pa 4; = ‘$; = p p  

4 2  - 2 I 3 -  2 
I ---#I - P ,  B 1 - 6  = - P z - P ,  K = R = Y . P x  4 3 -  

which do satisfy condition (19): [&, 4:) = 0 
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All j T 2  in formula (14) for the Poisson brackets of these constraints with the 
canonical Hamiltonian vanish except for 

-23 - 
j ;  y =g; ; = 1 g:  ; = -p  g, I -a. 

Then the system of equations (18) takes the form 

With the redefinition &: E I  and &: EZ we obtain 

As the parameters in the generating function depend on dr and b, we can derive the 'well- 
defined' Poisson brackets by applying the procedure of extending the phase space described 
in our previous paper [ 5 ] .  It is sufficient to make the following extension of the phase 
space: introduce the coordinates 

i = l  l a  
i = 2  
i = 3 , .  . . , n t 2 1 !i 41 i = 

I . v ~  i=nt3, .... 2n+2 

4 2 i " 4 l i  (34) 

whereas momenta follow from the definition of momentum variables in the theories with 
higher derivatives [18-201 (see formula (49) in the appendix: in our case, K = 2, r = 1,2,  
i = 1, . . . ,2n + 2) .  Note that by this definition, apart from the existing primary constraints 
4; = P I  I = pa and 4; = P I  2 = pa, there appear extra momenta 4) = p2 i = 0. Then, in 
extended phase space we have 

H, = %(SI i .  PI i )  Is, = H T  + UiPl i 

where vi are the Lagrange multipliers and Hc does not contain 42 i and p2 i. As the extra 
coordinates and momenta which extend the phase space enter into as separate terms, the 
structure of algebra of constraints and the system of equations (33) are not changed. Due 
to the definition (34) we can rewrite the generating function G (7) in the form 

from which it is clear that the corresponding transformations are canonical in the expanded 
phase space. 
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Using the explicit form of coordinate transformations in the configuration space (see 
footnote I ) ,  we can write 

Y .  SY = - - (Et  + Ea) ffs sg = -&z 

I .  Y sa: = --(z + By)(& + f f E 2 )  + 2-&1 + Y E ?  .B ff 

and it is not difficult to obtain that 

i.e. the action is invariant under the gauge transformations we have derived. 
The transformation law (35) in this example is consistent with the requirements we 

have discussed above, i.e. it is a two-parameter transformation as there are only two 
primary constraints, and it contains I ,  and 62, i.e. MI = 3 and MZ = 2. Note that the 
Noether transformations derived for the Lagrangian (32) in [ l l ]  are a particular case of our 
transformations (they are oneparameter transformations). 

2. Polyakov's string [ I  1,12 and 211. The Lagrangian density is given by 

L=- hap a, x p  a,xp 
2 
-1 -- - (httX2 - 2 h o i ( k i ) +  h,.h) 

2J=z 

, 
where a,g =0,  1, p = O,l ,  ... ,D - 1 and a lX = X, +,XI X. 

The canonical momenta are 

so the canonical Hamiltonian is 

hoi 
hi1 h i ~  

H H f - T  c -  

where H = f(P2 + i2) and T = (Pi). There are three primary constraints: 

$1 = no0 $2 = no1 $3 = l - f l l .  

Conservation in time of the primary constraints gives 

-1 n,=- 
2 G H  

1 
. JZh i i  hti 

H - - T  hoi n o t  = - 
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Following the above Dirac scheme of generating the constraints, one should declare, for 
example, the right-hand sides of first two equalities (40) to be secondary constraints: 

It is seen that the right-hand side of the thud equality (40) is expressed linearly through the 
constraints (41) and, therefore, does not give a new secondary constraint. However, as one 
can verify, the constraints (39) and (41) do not obey condition (19). Therefore, resorting to 
the procedure described in section 3, we introduce a new set of the secondary constraints: 

4; = CO,& U, 5 = 1.2 (42) 

where the coefficients C,, satisfy the equation system (U), the concrete form of which is 
not adduced here because of the formulae being cumbersome, but we immediately give its 
solution: 

CII = -2- Ci2 = 0 C21 = -2hol C22 = -hi]. (43) 

Then we obtain 

4: = H 4: = T. (44) 

The conditions of conservation in time of the constraints (44) do not give the tertiary 
constraints. 

Note that exactly such secondary constraints (44) right from the start (maybe, for reasons 
of simplicity) are selected in [ l l ]  and [12] and therefore satisfy condition (19), hence the 
transformations of coordinates in phase space which are obtained in the above work are the 
symmetry transformations (unlike the consideration of the previous example in the same 
work [ 111). 

To derive the transformations of coordinates by our method, we move to another 
equivalent set of the primary constraints, as in [ I l l  and 1121, although after the choice 
of the secondary constraints in the form to satisfy condition (19) one might at once apply 
our method (without passing to an equivalent set of the primary constraints). So, define 

4; =hwnw+hoinoi  + h i i n i i .  

Using the relation (14) for the new set of the constraints (44) and (45). we obtain the 
functions g 2 T' @?: 

1 2 -  1 2 -  
8, I - 82 2 - w - U )  
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all the remaining g,"' 7 q4y are equal to zero. 
Then the system of equations (18) takes the form: 

With the redefinition E: 5 E [ ,  E: = E *  and E: ~g we obtain 

Inserting (44), (45) and (48) into (7). on the basis of formulae (6) we obtain the 
transformations of coordinates in phase space which exactly coincide with the expressions 
(5.12) in [U]. Then the authors of [I21 go from the transformations of coordinates in the 
form (5.12) to those in covariant form via the introduction of a new set of the parameters. 
However, upon this replacement of parameters the transformations of coordinates become 
non-canonical because of the appearance of a term with kw (the Poisson brackets of hw 
with the variables of the phase space are not determined). Therefore, in the following 
one must proceed according to our method [5] and extend phase space as in the previous 
example. This removes all the above difficulties. 

5. Conclusions 

We have suggested a method of constructing gauge transformations for arbitrary degenerate 
Lagrangians (without restrictions on the algebra of constraints) in the generalized 
Hamiltonian formalism: they can be obtained explicitly on the basis of a specific form 
of the Lagrangian. The generating function given by (21) is derived from the requirement 
for the transformed quantities q: and p [  (6) to be solutions of the same system of equations 
(3) as the initial quantities q, and p , .  As to gauge transformations. this requirement is 
equivalent to the invariance of the action under these transformations or to the stationarity 
of the generating function (7) on the surface of the primary constraints (8), i.e. the generating 
function G, derived on the basis of one of them, satisfies the other two. 

In our previous papers [4,5] we constructed gauge transformations for Lagrangians with 
the only restriction on the algebra being constraints (19), which is satisfied by a wide class of 
theories. In this paper we have proved that there always exist equivalent sets of constraints 
for which the condition (19) holds valid. We have shown the way of transition to one of 
these sets when all the primary constraints are momentum variables. 

The generating function (21) corresponds, in form, to the Dirac hypothesis in the sense 
that all the first-class constraints generate gauge transformations. The number of arbitrary 
functions (important parameters) which the function G depends on is equal to the number of 
primary constraints. Note an essential peculiarity: the transformation law contains essential 
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parameters and their derivatives, but the leading derivative is always present and is of 
order one smaller than the number of stages in deriving secondary constraints by the Dirac 
procedure. 

By the formulae i n  footnote 1, we have obtained the Noether transformations (i.e. with 
respect to which the action is invariant) in configuration space. The mechanism of the 
appearance of higher-order derivatives with respect to coordinates established earlier [5] in 
the class of theories with restriction on the algebra of constraints is now applicable in the 
general case. 

As is known, gauge-invariant theories belong to the class of degenerate theories. In this 
paper we have shown that the degeneracy of theories with first-class constraints is due to 
their invariance under gauge transformations we have here constructed. 
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Appendix 

We will now show invariance of the action under the gauge transformations (6) and (21) in 
the phase space expanded by the method of 151. The coordinates a e  defined as follows. 

@-I 

41 L = qc qs I = ;it"iqi s = 2 , .  . . , K i = 1, . _ ,  , N 

( K  equals the highest order of derivatives of q and p )  and the conjugate momenta defined 
by the formula [ 17,191 

are 

p ,  = p i  P , ~  i = 0 fors  = 2 ,  .. . , K .  

The generalized momenta for s > 2 are extra primary constraints, 
The total Hamiltonian is of the form 

where HT is given by (4) and A,y i are arbitrary functions of time. From (50) we may 
conclude that there do not appear additional secondary constraints corresponding to P . ~  i for 
s 2 2. 

The set of constraints (5 )  in the initial phase space remains the same in extended phase 
space, obeys the same algebra (13), (14), and does not depend on the new coordinates and 
momenta. The action is of the form 
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and the generating function in the extended phase space is [5] 

(M.-mn) G=B:?(qt i ~ q 2 i ~ . . . ~ q K i ; P t  i)@F(qt ;,PI i k g  0). 

The coordinates and momenta are then transformed in the following way 

Using this equation and the equality 

we obtain 

The first term in (52) vanishes due to the boundary conditions on ea and their derivatives. 
The second term of (52), in view of (S), can be written in  the form 

and, therefore, 

GSlgp0 = 0. 

As a result of (49), (53) and @A(q, p ( q .  4)) = 0 we obtain from (52) SS = 0 in configuration 
space. 
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